Choose a foreground image size that is a larger multiple of your movie image tile size. 选择一个比您的影片图像贴片大几倍的前景图像。
Creation of a foreground image with The Gimp 用Gimp创建前景图像
This includes the background images for each frame of the video and the foreground image of the text ELENA. 这包括用于视频每个帧的背景图像和文本ELENA的前景图像。
Remember, any white pixels you put in your foreground image will provide a mask over the background frames. 记住,在您的前景图像中所使用的任何白色像素将提供背景帧的蒙版。
The next step is to insert a white foreground "mask" image onto this canvas. 下一步是将一个白色背景“mask”图像插入到此画布上。
Fingerprint Preprocess includes Fingerprint Foreground Extraction, Image Enhancement and Thinning. 预处理部分涉及到指纹有效区域的提取、指纹图的增强和指纹细化。
The method consists of three steps. Firstly, image segmentation is achieved by watershed transform based on phase congruency gradient and foreground marking to extract image objects. 首先,利用基于相位一致梯度与前景标记的分水岭变换进行影像分割,提取图像斑块;
This new algorithm uses the background subtraction method to get the foreground image, and then gets the binary image using threshold value and makes the morphology processing. 该算法利用背景差法获得前景图像,然后进行二值化和形态学处理,再和背景帧进行比较来对滞留和搬移物体进行检测和分类。
A method of image retrieving based on fortified foreground image texture 基于加强的前景图像纹理的图像检索方法
The card can mix foreground digital video and background image video in real time and can control the proportion of the foreground digital video and the background image video by alpha key. It can also bypass the foreground digital video or the background image video by oneself. 该卡能实时完成背景数字视频和前景图像视频的实时叠加,并可通过alpha键控制前景视频和背景视频的叠加比例,也可单独输出前景视频或背景视频。
Interesting region is mostly the foreground image, Focus region selection has to estimate the foreground region for image segmentation algorithm is not practical. 由于兴趣区域为前景图像区域,聚焦区域选择算法需要选择前景图像区域作为聚焦窗口。由于前后景图像分割理论还不成熟,目前只能采用对前景图像区域进行估计的方案。
The suspect calcification region of interest ( ROI) was first detected by using higher order statistic feature and morphology operator, so the ROI was defined as foreground image, and the rest was background image. 首先利用高阶统计特征,并结合数学形态学方法检测出钙化点的感兴趣区域,得到了可靠性较高的前景图像,剩余部分设定为背景图像;
A Moving Foreground Segmentation Approach in Image Sequence 企业形象研究;一种图像序列中的运动前景分割算法
Foreground extraction and image compositing are fundamental operations in image processing, and they have become crucial and frequently used operations in visual productions. 前景提取与图像合成是图像处理中的基本操作,也是视觉特效制作中是最重要和最常用的操作。
This paper proposes an effective approach to improve Otsu thresholding, which combines cohesiveness of foreground and background image pixel class into standard Otsu thresholding and presents an improved classification function. 本文提出了一种对Ostu法进行改进的阈值计算方法,将前景和背景像素类的内聚性结合到Otsu法中,并给出了一个改进的分类判别函数。
Firstly, the mixture Gaussian model was constructed, and a new way is adopted to update background, which utilizes different equations at different phases. Then, a coarse foreground image could be obtained by background subtraction. 2. 对彩色图像建立混合高斯模型,并采用新方法更新背景模型,即不同的阶段使用不同的更新方程,然后由背景差分得到基本准确的前景图像。
If the target area detection is correct on the image background and the foreground of image were constructed Gaussian mixture model; Gibbs energy function iterative minimum cut energy reaches the approximate minimum and image segmentation. 若目标区域检测正确则对图像背景及可能的图像前景分别构建高斯混合模型;利用Gibbs能量函数迭代最小割使得其能量达到近似最小而实现图像分割。
The algorithm mainly uses the sixth, seventh, eighth bitmap of grayscale image to construct background image, by processing the difference between the foreground image and background image and mathematical morphology to split the characteristics of the target. 该算法主要采用灰度图像的第6、7、8位的位图像,构造背景图像,通过前景图像与背景图像的差值及数学形态学处理分割特征目标。
The method could divide image into foreground and background precisely, give prominence to foreground in image retrieval, accord with human visual perception. 该方法能够较准确的分割出图像的目标和背景,突出图像目标在检索中的主体地位,更加符合人眼对图像的识别要求。
Moving target detection requires separate foreground from background to detect image motion and prepare for target tracking and trajectory analysis. 运动目标检测需要分割前景目标和背景图像,检测图像中的运动信息,为跟踪和分析目标的运动轨迹做好准备。
Digital image matting is to extract the specified foreground object from a natural image. It is first used in special effect production of film industry, and creates a lot of commercial value for the industry. 数字图像抠图技术是指把指定的前景从已有的自然图像中分离出来的一种技术。它最早被运用于影视业的特效制作中,为影视业赢得了巨大的商业价值。
Our method extracts the foreground from the depth image firstly. 本文方法首先利用深度图像提取出前景图像。
The algorithm analyzes the vertical projection of the binary moving foreground image to segment and locate the targets. 该算法是通过对二值化前景图的投影进行分析,定位场景中的人。
This article does some research on moving foreground extraction of video image and fast skeleton extraction based on the analysis of latest technology both at home and abroad. 本论文在分析研究国内外最新技术基础上,对视频图像的运动前景和骨架快速提取方法进行了研究,主要工作如下。
Contour convex hull added a section foreground pixels for differential image and Gauss modeling foreground image lost, making the vehicle outline complete. 轮廓凸包补充了一部分因差分和高斯建模丢失的前景像素点,使得车辆的轮廓比较完整。
In addition, the separation method of the background image and foreground image is adaptive, and can be adapted to vehicle detection in different lighting conditions with good robustness. 另外,文本采用的背景图像与前景图像的分离方法是自适应的,可以适应不同光照条件下的车辆检测,具有很好的鲁棒性。
The background subtraction based detection algorithm is applied. Gaussian Mixture Model is used to build the model of background. While updating the background model coefficient, we obtain the foreground image and the labeled moving region. 首先对视频中的运动目标进行检测,采用减背景的方法,通过高斯混合模型建立背景模型,在模型参数不断地更新过程中,得到前景图像。
Secondly, grayscale foreground image is self-adaption binaryzation by modified Otsu algorithm, which gains a good effect in different illumination condition. 其次,用改进的OTSU算法对差值图像进行自适应的二值化,这使得在不同光照变化情况下都能取得较好的二值化效果。
The algorithm uses stable state to distinguish the suspicious blocks. The binary segmentation is operated according to the SAD value of corresponding block between the foreground image and background image. 利用稳定状态判断存在可疑目标的块,通过前景图像与背景图像对应块的SAD值进行二值化分割。
As a result, image retrieval based on dominant color identification in the foreground and background of an image is proposed. This method reduces the dimensions of feature vector, incorporates spatial information, and is insensitive to rotations and absolute, relative spatial locations. 因此论文提出了基于图像前景和背景主颜色的图像检索方法,既减小了颜色特征维数,又综合了颜色的空间分布信息,并且对图像的旋转和绝对位置不敏感。